Organisaties die willen starten met machine learning hebben vaak een lange weg te gaan. Om te beginnen moet er een toepassing voor het model bedacht worden en vervolgens kan het model ontwikkeld worden. Is dit eenmaal zover, dan begint de volgende uitdaging. Het model moet namelijk ook nog eens onderhouden worden, schaalbaar zijn en compleet veilig. En als kers op de taart moet het model ook nog eens blijven leren van zijn eigen beslissingen. Een behoorlijke klus. Maar goed nieuws! Mail to Pay heeft dit werk zo’n vijf jaar geleden al verricht, waardoor er voor jou slechts drie stappen overblijven.

1. Bied het model voldoende opties

Om het model optimaal in te zetten is het goed om voldoende opties beschikbaar te hebben. Deze opties bevinden zich op drie gebieden; kanalen, design en tone-of-voice. Door het model de beschikking te geven over meerdere kanalen, kan de beste optie voor de klant gekozen worden. De ene klant ontvangt liever een e-mail met betaallink dan een brief met QR-code. Of komt een SMS of push notificatie vaak beter uit, dan een telefoontje door een robot of een callcenter. En ondanks dat het model altijd naar het kanaal zoekt met de hoogste waarschijnlijkheid van betaling, kan de combinatie van verschillende kanalen kan ook succesvol zijn. Een reminder per SMS kan net de trigger zijn voor de klant om de e-mail, die hij vorige week ontving, te voldoen.

Per kanaal zijn er ook meerdere opties te bieden. Een herinnering per e-mail kan namelijk in verschillende vormen en smaken worden verzonden. Klanten reageren verschillend op een bepaald design. Moet een betaalknop bijvoorbeeld prominent aanwezig zijn, speel je met de kleur van de knoppen of leg je meer de nadruk op het grafisch weergeven van de situatie. Vervolgens is de tone-of-voice nog een optie om het model mee te voeden. Hoe reageert de klant bij een vriendelijke tone-of-voice of moet een bepaalde klant juist iets strenger aangesproken worden.

Om het model optimaal te laten functioneren is het raadzaam om ± 40 betaalverzoeken te bieden. Dit betekent zo’n 3 herinneringen per e-mail, 2 aanmaningen per SMS, enzovoorts. Op deze manier benadert het model elke klant op de gewenste manier.

2. Lever hem zoveel mogelijk datavelden

Het machine learning model van Mail to Pay is gevuld met miljoenen betaalervaringen. Deze ervaringen zijn cruciaal om het juiste betaalverzoek per klant te selecteren. De keuze voor dit optimale betaalverzoek wordt gebaseerd op de datavelden die het model aangeleverd krijgt. Lever je alleen de minimale datavelden aan, zoals naw gegevens en factuurinformatie, dan moet het model op basis van deze datavelden een keuze maken. Dit is vaak voldoende om het huidige aanmaantraject te verslaan, maar het kan nog beter. Lever je bijvoorbeeld extra datavelden aan, dan is het model in staat om nog gedetailleerder te analyseren. Datavelden als een geboortedatum, de betaalhistorie, aanvullende factuurinformatie of het aantal jaren dat hij al klant is, kunnen het model relevante informatie bieden.

Zelfs datavelden die het model nog niet kent zijn relevant. Bijvoorbeeld een interne scoring of een bepaald segment waarin een klant is ingedeeld. Bij aanvang zal het model deze datavelden niet zwaar meewegen in de beslissing, omdat hij er nog geen resultaten aan kan koppelen. Maar hoe vaker hij deze datavelden ontvangt en kan koppelen aan een bepaald resultaat, des te relevanter de datavelden kunnen gaan worden om micro segmentatie toe te passen. Uiteraard kan het ook zo zijn dat het model ontdekt dat deze extra datavelden totaal geen toegevoegde waarde bieden om het juiste betaalverzoek te sturen. Het model baseert zijn beslissingen namelijk op harde data en niet op aannames. Hoe vreemd het misschien ook klinkt, maar zelfs de schoenmaat van een klant zou voor het model een bepalend dataveld kunnen zijn.

3. Geef het model nieuwe varianten

Nu het model continu aan het werk is en bij elke klant in een split second het juiste betaalverzoek kan selecteren, is het tijd om het model extra te trainen. Rapportages zullen aantonen dat bepaalde betaalverzoeken erg goed werken en sommige minder. De betaalverzoeken die een lager rendement behalen zullen ook minder ingezet worden. Deze betaalverzoeken kunnen vervolgens vervangen worden door nieuwe varianten. De variatie zit hem dan voornamelijk in kanaal, design en tone-of-voice. Of dit nu grote of kleine aanpassingen zijn is minder relevant, het model toets de nieuwe variantie op rendement. En is een nieuwe variant succesvol bij bepaalde klanten, dan zal deze frequent worden ingezet.

Om met het machine learning model van Mail to Pay te starten is slechts een kleine investering gewenst. Deze investering beperkt zich tot het bieden van de juiste opties en de variatie hierop. Daarnaast is het raadzaam om het model veel datavelden te leveren, zodat beslissingen hierop gewogen kunnen worden. In de praktijk kunnen klanten binnen twee weken starten met het model en gaat het model met alle liefde de strijd aan met het huidige aanmaantraject. Maar de grote winnaar is vooral de klant, die krijgt op het gewenste moment het juiste betaalverzoek.

Bron: Creditexpo.nl